19 research outputs found

    Strict Minimal Siphon-Based Colored Petri Net Supervisor Synthesis for Automated Manufacturing Systems With Unreliable Resources

    Get PDF
    Various deadlock control policies for automated manufacturing systems with reliable and shared resources have been developed, based on Petri nets. In practical applications, a resource may be unreliable. Thus, the deadlock control policies proposed in previous studies are not applicable to such applications. This paper proposes a two-step robust deadlock control strategy for systems with unreliable and shared resources. In the first step, a live (deadlock-free) controlled system that does not consider the failure of resources is derived by using strict minimal siphon control. The second step deals with deadlock control issues caused by the failures of the resources. Considering all resource failures, a common recovery subnet based on colored Petri nets is proposed for all resource failures in the Petri net model. The recovery subnet is added to the derived system at the first step to make the system reliable. The proposed method has been tested using an automated manufacturing system deployed at King Saud University.publishedVersio

    Intelligent Colored Token Petri Nets for Modeling, Control, and Validation of Dynamic Changes in Reconfigurable Manufacturing Systems

    Get PDF
    The invention of reconfigurable manufacturing systems (RMSs) has created a challenging problem: how to quickly and effectively modify an RMS to address dynamic changes in a manufacturing system, such as processing failures and rework, machine breakdowns, addition of new machines, addition of new products, removal of old machines, and changes in processing routes induced by the competitive global market. This paper proposes a new model, the intelligent colored token Petri net (ICTPN), to simulate dynamic changes or reconfigurations of a system. The main idea is that intelligent colored tokens denote part types that represent real-time knowledge about changes and status of a system. Thus, dynamic configurations of a system can be effectively modeled. The developed ICTPN can model dynamic changes of a system in a modular manner, resulting in the development of a very compact model. In addition, when configurations appear, only the changed colored token of the part type from the current model has to be modified. Based on the resultant ICTPN model, deadlock-free, conservative, and reversible behavioral properties, among others, are guaranteed. The developed ICTPN model was tested and validated using the GPenSIM tool and compared with existing methods from the literature.publishedVersio

    Comparison and Evaluation of Deadlock Prevention Methods for Different Size Automated Manufacturing Systems

    Get PDF
    In automated manufacturing systems (AMSs), deadlocks problems can arise due to limited shared resources. Petri nets are an effective tool to prevent deadlocks in AMSs. In this paper, a simulation based on existing deadlock prevention policies and different Petri net models are considered to explore whether a permissive liveness-enforcing Petri net supervisor can provide better time performance. The work of simulation is implemented as follows. (1) Assign the time to the controlled Petri net models, which leads to timed Petri nets. (2) Build the Petri net model using MATLAB software. (3) Run and simulate the model, and simulation results are analyzed to determine which existing policies are suitable for different systems. Siphons and iterative methods are used for deadlocks prevention. Finally, the computational results show that the selected deadlock policies may not imply high resource utilization and plant productivity, which have been shown theoretically in previous publications. However, for all selected AMSs, the iterative methods always lead to structurally and computationally complex liveness-enforcing net supervisors compared to the siphons methods. Moreover, they can provide better behavioral permissiveness than siphons methods for small systems. For large systems, a strict minimal siphon method leads to better behavioral permissiveness than the other methods

    Synthesis of Liveness-Enforcing Petri Net Supervisors Based on a Think-Globally-Act-Locally Approach and a Structurally Minimal Method for Flexible Manufacturing Systems

    Get PDF
    This paper proposes a deadlock prevention policy for flexible manufacturing systems (FMSs) based on a think-globally-act-locally approach and a structurally minimal method. First, by using the think-globally-act-locally approach, a global idle place is temporarily added to a Petri net model with deadlocks. Then, at each iteration, an integer linear programming problem is formulated to design a minimal number of maximally permissive control places. Therefore, a supervisor with a low structural complexity is obtained since the number of control places is greatly compressed. Finally, by adding the designed supervisor, the resulting net model is optimally or near-optimally controlled. Three examples from the literature are used to illustrate the proposed method

    Studying the Effect of Process Parameters on Part Depth in Single Point Incremental Forming of AA1050-H14 Aluminum Alloy Sheets

    Get PDF
    Single Point Incremental Forming (SPIF) is an innovative forming approach for sheet metal that promises an inexpensive and flexible way to produce sheet metal parts in small batches. SPIF allows the production of complex geometries using a computer numerical control machine. In this study, SPIF has been conducted to investigate the effects of sheet thickness, tool diameter, feed rate, and step size on part depth. Statistical tools were used to design the experiments. Analysis of variance, as well as regression and optimization techniques were used to analyze the resulting part depth. Two levels of each parameter were included in a full factorial design. The study found several relations amongst the process parameters and the part depth. In summary, it was proved that the sheet thickness and tool diameter have the greatest effect on the part depth, whereas the step size has a small, but significant one

    A New Association Analysis-Based Method for Enhancing Maintenance and Repair in Manufacturing

    Get PDF
    Maintenance and quality of products are absolutely crucial for any organization to succeed in the industrial and manufacturing engineering. Current research studies have confirmed the presence of a high correlation between these two factors, namely maintenance and quality of products, in industrial organizations. Nevertheless, no extensive research has been conducted in order to study the link between maintenance and the quality of products in manufacturing. In this paper, we conduct a study in this domain and examine the relationship patterns between maintenance and the quality of product using manufacturing data on maintenance and the product quality. Specifically, we employ association analysis and association rule mining with large and extensive sets of product quality, repair, and maintenance data. Our main objective is to discover interesting and non-trivial associations for feature failure resulting in the repair or maintenance of a product with unapproved quality. The results of evaluation are quite interesting. The resulting association rules with high values of confidence and lift suggest some essential associations between the product features and the failure; such findings have not been known and used before. This can help quality engineers and maintenance teams to enhance maintenance and repair operations and lower the overall cost of manufacturing

    A Model for Maintenance Planning and Process Quality Control Optimization Based on EWMA and CUSUM Control Charts

    Get PDF
    The performance of a production system is highly dependent on the smooth operation of various equipment and processes. Thus, reducing failures of the equipment and processes in a cost-effective manner improves overall performance; this is often achieved by carrying out maintenance and quality control policies. In this study, an integrated optimization method that addresses both maintenance strategies and quality control practices is proposed using an exponentially weighted moving average (EWMA) chart, in which both corrective and preventive maintenance policies are considered. The integrated model has been proposed to find optimal decision variables of both the process quality decision parameters and the optimal interval of preventive maintenance (i.e., Ns, Hs, L, Ī», and t_PM) to result in overall optimal expected hourly total system costs. A case study is then utilized to investigate the impact of cost criteria on the proposed integrated model and to compare the proposed model with a model using the cumulative sum (CUSUM) control chart. The improved model outputs indicate that there is a reduction of 34.6% in the total expected costs compared with those of the other model using the CUSUM chart. Finally, an analysis of sensitivity to present the effectiveness of the model parameters and the main variables in the overall costs of the system is provided

    Single Controller-Based Colored Petri Nets for Deadlock Control in Automated Manufacturing Systems

    Get PDF
    Deadlock control approaches based on Petri nets are usually implemented by adding control places and related arcs to the Petri net model of a system. The main disadvantage of the existing policies is that many control places and associated arcs are added to the initially constructed Petri net model, which significantly increases the complexity of the supervisor of the Petri net model. The objective of this study is to develop a two-step robust deadlock control approach. In the first step, we use a method of deadlock prevention based on strict minimal siphons (SMSs) to create a controlled Petri net model. In the second step, all control places obtained in the first step are merged into a single control place based on the colored Petri net to mark all SMSs. Finally, we compare the proposed method with the existing methods from the literature.publishedVersio

    Automatic Supervisory Controller for Deadlock Control in Reconfigurable Manufacturing Systems with Dynamic Changes

    Get PDF
    In reconfigurable manufacturing systems (RMSs), the architecture of a system can be modified during its operation. This reconfiguration can be caused by many motivations: processing rework and failures, adding new products, adding new machines, etc. In RMSs, sharing of resources may lead to deadlocks, and some operations can therefore remain incomplete. The objective of this article is to develop a novel two-step solution for quick and accurate reconfiguration of supervisory controllers for deadlock control in RMSs with dynamic changes. In the first step, the net rewriting system (NRS) is used to design a reconfigurable Petri net model under dynamic configurations. The obtained model guarantees boundedness behavioral property but may lose the other properties of a Petri net model (i.e., liveness and reversibility). The second step develops an automatic deadlock prevention policy for the reconfigurable Petri net using the siphon control method based on a place invariant to solve the deadlock problem with dynamic structure changes in RMSs and achieve liveness and reversibility behavioral properties for the system. The proposed approach is tested using examples in the literature and the results highlight the ability of the automatic deadlock prevention policy to adapt to RMSs configuration changes.publishedVersio

    Fault Detection, Diagnostics, and Treatment in Automated Manufacturing Systems Using Internet of Things and Colored Petri Nets

    No full text
    Internet of things (IoT) applications, which include environmental sensors and control of automated manufacturing systems (AMS), are growing at a rapid rate. In terms of hardware and software designs, communication protocols, and/or manufacturers, IoT devices can be extremely heterogeneous. Therefore, when these devices are interconnected to create a complicated system, it can be very difficult to detect and fix any failures. This paper proposes a new reliability design methodology using “colored resource-oriented Petri nets” (CROPNs) and IoT to identify significant reliability metrics in AMS, which can assist in accurate diagnosis, prognosis, and resulting automated repair to enhance the adaptability of IoT devices within complicated cyber-physical systems (CPSs). First, a CROPN is constructed to state “sufficient and necessary conditions” for the liveness of the CROPN under resource failures and deadlocks. Then, a “fault diagnosis and treatment” technique is presented, which combines the resulting network with IoT to guarantee the reliability of the CROPN. In addition, a GPenSIM tool is used to verify, validate, and analyze the reliability of the IoT-based CROPN. Comparing the results to those found in the literature shows that they are structurally simpler and more effective in solving the deadlock issue and modeling AMS reliability
    corecore